Reclaiming Poisoned Soil—With Cow Manure

18 Nov, 2012

via Inside Science News Service

 A landscape, eroded and barren, following years of zinc smelting operations. Image credit:  Nicholas T via flickrWhen the last of the zinc and lead mines of Kansas, Oklahoma, and Missouri shut down in 1970, the operations left behind a ghastly legacy across thousands of acres of poisoned earth. Nothing would ever grow there; nothing could live there. Erosion became a serious issue during rain storms, and the poisons spread in the running water. The soil became contaminated by high acidity, and toxic chemicals.

But now, researchers might have found a way to neutralize the ground to at least halt the erosion by using cow manure compost.

“The compost reduces the overall bulk of the toxic material and the heat it generates reduces pathogens and concentrates the inorganic nutrients,” said Paul White, a research soil scientist at the Department of Agriculture’s Sugarcane Research Unit in Houma, La.

No one will ever grow crops on the affected land again, White said, but it’s possible to grow a ground cover that will stop erosion and it surely looks better.

The general area between Tulsa, Wichita, and Springfield, Mo., had been mined since the 1850s and was in full operation for 100 years. Besides smelters—which left toxic sites—the mines produced tailings called “chat,” which added to the pollution.

The pollution is extraordinary. Bret Koehler, a geologist at the California Department of Conservation, said one abandoned zinc mine near Redding in Iron Mountain, Calif., is so bad that the Environmental Protection Agency designated it one of about 1,300 current Superfund sites in need of comprehensive clean-up. The soil produced one of the highest acidity measurements on Earth, Koehler said.

The aim of the Midwest experiment, White said, was to increase the carbon in the soil so that microorganisms that recycle nutrients could have a chance. The scientists also wanted to see whether the compost could reduce the lead and zinc.

They took 3-by-6 foot plots and spread either 20 or 120 tons of beef cattle manure compost to the land on some. White said they also filled in holes but none of them went very deep; the soil was compacted with the mining detritus. Then they spread switchgrass seed on all the plots and took samples over a two-year period.

The results were both visible and demonstrable in the lab. The soils in the plots with the highest amount of compost had a greatly elevated pH, meaning they were much less acidic. There was more phosphorus, nitrogen, carbon, and available water in the soil, all things plants need to survive and grow.

Read the rest of this article at ISNS.

About the author

  • SynerGenetics

    What about pasteurized human waste?